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Abstract By investigating the related nonlinear equation, the ergodic theorem is obtained for the super-Browni-

an with super-Brownian immigration in two dimension.
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Super -Brownian motion with super-Brownian immigration ( SBMSBI ) was firstly studied by
Hong and L, They established the (weak) central limit theorem for dimension d =3, and ob-
tained, as a consequence, the weak ergodic theorem (law of large number) . But they did not give the
result for d = 2. In this paper, this case (d = 2) is discussed, and by investigating the related evo-
lution equation, a weak ergodic theorem for the SBMSBI is obtained.

Let C{(R?) denote the space of continuous bounded functions on R?. Fix a constant p>d and
let ¢p(x): =(1+1%1%)"??for x€R? and CP(Rd)I ={feCc (R*): 1f(x)! sconst"ﬁ},(x)l.
Let Mp(Rd) be the space of Radon measures z on R? such that (pofr = Jf(x)#(dx) < ® for
all /€ C,(R?). Endow M,(R®) with the p-vague topology, that is, sz, if and only if s, f)
—>(u,f) for all fE€ CP(Rd). Throughout the paper, A denotes the Lebesgue measure on R?.

Suppose that W = (w,, t=0) is a standard Brownian motion in R? with semigroup (P,)s0-
Firstly recall the SBMSBI briefly (see ref. [1]). Let y: = { Yot =0/ be a continuous Mp(Rd)-val-
ued function, X” : = { X7, t=0, P]} the super-Brownian motion with immigration rate ¥, is given

by the Laplace functional>! ;

Plexp(- (X7,f)) = exp(- {(A,v(t, *)) —L:(ys, v(t -5, *))ds), fE€ C:(RY), (1)

where »(*,*) is the unique positive mild solution of the evolution equation

I}

v(e) = Av(t) - v*(1),
|
v(0) = f.
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The so-called SBMSBI is the super-Brownian motion with random immigration, where the immigration
rate is determined by the trajectory of another super-Brownian motion. For details, one can construct
a probability space (2, % Q) on which the processes {p,:t =0} and { X¢:: >0} are defined,
where {0,:¢=0, P,! is a super-Brownian motion with p = A and, giving the trajectory {p,:¢ =0/}
for P,-a.s., the process { X’:¢t=0, P{} is a super-Brownian motion with immigration determined
by {p,:¢=0}, which is called SBMSBI with X§ = A and,

() : = BB = [PR() P (do).

Then from (1) and the representation for the occupation time of super-Brownian motion'*!, the
Laplace transition functional of the SBMSBI X* under the law @ is

QGXP(— <Xf’f>) = exp(" <A ,D(t, ')> - <'\’u(t’ ')>d3>) fe C;(Rd)’ (3)

where v(+,*) is given by (2) and u(*,*) is the unique positive mild solution of the evolution equa-
tion
u(e) = Au(e) = (1) + v(2),
(4)
u{(0) = 0.

Now, the main result can be obtained.

Theorem 1. Let d =2, then as T »
T'X5 — € - A weakly (with respect to Q),
where £ is a non-negative , infinitely divisible random variable whose Laplace transform is given by
Qexpt- 68} = expi- (A, w(1, -;0))}, ()

where w= w(t,x3;0) is the mild solution of the evolution equation

w(t) = Aw(t) - w*(t) + 6p,(x),
[ (6)

w(0) = 0.

Now we proceed to the proof of Theorem 1. Let v7(¢,x) be the mild solution of the equation

v(1) = Av(t) - v*(2),
{ (7

v(0)

T-'f.
In the following lemmas, we consider f€ CP(IF;d) * such that (A,f) =1.

Lemmal. Letd=2, then we have
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limTsz(Tt, T?%) = p,(x),

where p,(x) is the transition density function of the Brownian motion .

Proof. 1In this and the following proofs, C will denote a constant which may take different val-

ues in different lines. The mild form of (7) is
¢
vp(t,2) = P(T'f)(x) —J Pp3(t - s, +) (x)ds.
0

Then

Vi
op(Tt, TV2%) = Pp(T-1f)(T) _f PoA(Tt - s, ») (T2x)ds,
0

note that d =2, we can calculate that as T—> o,

TZPT,(T“f)(Tszl) TJp(Tt, TV2%,y)f(y)dy

= TJ(ZnTt)"exp{- %ﬁ}f(y)dy

=J‘(21ct)_1exp{— g—x_—g;—ﬁﬁ}f(}’)d}'

_)Pz(x)<A9f> = p,(x)
On the other hand, for any f€ Cp(Rd )* we have

lPfl < C- (A s,
it follows that

Tt
TZJ Pv%(Tt - s, «)(T?x)ds
0
Tt
<C- TZJ. P Pr_ T f1P(TY?x)ds
0
T
< C+ P f(Tx) J (1 A (Tt = s))ds
0

=C- T’1J‘0T’(1 A s'l)dsj(21ct)'lexp{- (x—_g—t—m‘ﬂ}f(y)dy

—0.

(8)
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Combining with (8), the desired conclusion is reached.

Lemma 2. Letd =2, wyp(t,x) be the mild solution of the equation

wr(t,x) = Awrp(t,x) — wh(t) + TPop(Tt, TV?2),
(9)
wT(O) = 0.
Then w(t,x): =limp. , wr(t,x) exists and, is the mild solution of the equation
w(t,x) = Aw(t,x) - w*(t,x) + p,(x),
(10)
w(0) = 0,
and the limit taken in C([0, + © ), L*(1)) and pointwise .
Proof. The mild form of (9) is
t i
wr(s,2) = | P (TPop(Ts, T2 ) (2)ds [Pt s
0 0

It can be verified that {wy} y,qis L*(A)-Cauchy. Let T, T, >0, then from (11), ones have

[ 2
I wrl(t,x) - sz(t,x) |2 sZ(JOP,_,[szi(s, +) - szl(s, )](x)ds)

t 2
+2(J P,_ [ Tovp (Tys, TY? <) = Tav, (Tys, TV? -)](x)ds) .
0 2 1

But from (8), one can see
Top(Te, TV?x) < T*P(T'A)(T?x) < (2mt)"".

So the limit in Lemma 1 is taken in C([0, + © ), L*(1)) and pointwise. Combining this, the re-
maining proof is similar to Proposition 3.9 in ref. [5]: firstly, we can prove that the limit w (¢, x)
exists in C([0, + ® ), L*(1)), then, the limit is taken in pointwise and satisfying (10), finally,

the mild solution of (10) is unique. The detail is ommited.
Lemma 3. limy.,{A, wp(t,*))=(A, w(t,*)), for t=0.

Proof. The mild form of (10) is
t
w(t,x) = 1p,(%) _LP,_,WZ(S, ) (x)ds. (12)
Then from (11) and (12), we have

(A, wet, *)) = J;(A,TZUT(Ts, TV% <))ds -J;(a, wh(s, +))ds, (13)
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and
(e, ) = = [ (A, uis, ). (14)
0

By Lemma 1 and Lemma 2, the two terms in the right side of (13) converge to that of (14) respec-
tively and, the desired conclusion is reached.

Proof of Theorem 1. The Laplace functional of T~ 'X; is
Qexp(- TN X%, £)) = exp(= (A,0p(T, *)) = (A,ur(T, ))ds), fE€ C;(R?), (15)

where v;(*, ) is the mild solution of (7) and uy(*,*) is the mild solution of the equation

up(t) = BDug(t) - u%(e) + vr(e),
|
Define wy by wy(t,X): = Tup(Te, TV?x), then from (16), wy satisfies
wr(t,x) = Awp(t,x) — wi(t) + TPop(Te, TV?x),
{ (17)
wT((_)) = Os
and
(Awp(1, +)) = €A, u(T, ). (18)

In the case </\,f> =1, by Lemma 2, the limit w(¢,x): = limp,, wp(t,x) exists and is the

unique positive mild solution of the equation

w(t,x) = Aw(t,x) — w?(t,x) + p,(x),

(19)
w(0) = 0.

For the unnormalised case, we can replace f with fg, where 8 >0 and (A, g) =1, and arrive at

w(t,x) = Aw(t,x) - w?(t,2) + Op,(x),
(20)
w(0) = 0.
On the other hand, from the mild form of (7), we have
(A,00(T, )) < (A, P(T'f)) -0, (21)

as T—> o ., Combining (18), (21) and Lemma 3 with (15), ones obtain that

lim Qexp( - THX5,f)) = exp(- (A, w(l, +56))), (22)
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where w(t,x;0) is given by (20). So we get a limit of 7' X; as a random positive functional on
C.(R?)*, I(f), say, whose Laplace functional is given by (22). By the extension Riesz represen-
tation theorem'S’ , there is a unique random measure g on R?, such that I( )= { Yo f> = &2, f> ,
where & is a non-negative random variable whose Laplace functional is given by (5). The infinite di-

visible property of & can be derived from its Laplace functional (see ref. [5]).

Furthermore, we have

Theorem 2. Let d =2, then as T—>
T-'X6,—> & + A weakly,
where &, is a non-negative increase stochastic process such that
Qexpi- 06} = expl- (A, w(s, +;0))},

where w(t,x;0) is the same as Theorem 1.

Combining Lemma 2, the proof is similar to theorem 3 in ref. [5], the detail is ommited.
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